Complete moment convergence of extended negatively dependent random variables
نویسندگان
چکیده
منابع مشابه
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).
متن کاملEquivalent conditions of complete moment convergence for extended negatively dependent random variables
In this paper, we study the equivalent conditions of complete moment convergence for sequences of identically distributed extended negatively dependent random variables. As a result, we extend and generalize some results of complete moment convergence obtained by Chow (Bull. Inst. Math. Acad. Sin. 16:177-201, 1988) and Li and Spătaru (J. Theor. Probab. 18:933-947, 2005) from the i.i.d. case to ...
متن کاملComplete convergence for negatively dependent random variables
Let {Xn, n ≥ 1} be a sequence of independent and identically random variables. In 1947 Hsu and Rabbins proved that if E[X] = 0 and E[X2] < ∞, then 1 n ∑n k=1Xk converges to 0 completely. Recently, the strong convergence of weighted sums for the case of independent random variables has been discussed by Wu (1999), Hu and et. (2000, 2003) proved the complete convergence theorem for arrays of inde...
متن کاملComplete Convergence for Negatively Dependent Random Variables
Let {Xn, n ≥ 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5] proved that if E(X) = 0 and E(X) < ∞, then the sequence 1 n ∑n i=1 Xi converges to 0 completely. (i.e., the series ∑∞ n=1 P [|Sn| > nε] < ∞, converges for every ε > 0). Now let {Xn, n ≥ 1} be a sequence of negatively dependent real random variables. In this paper, we proved the complete convergence of the sequen...
متن کاملComplete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation
In this paper, we study the complete convergence and complete moment convergence for weighted sums of extended negatively dependent (END) random variables under sub-linear expectations space with the condition of [Formula: see text], further [Formula: see text], [Formula: see text] ([Formula: see text] is a slow varying and monotone nondecreasing function). As an application, the Baum-Katz type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2020
ISSN: 1029-242X
DOI: 10.1186/s13660-020-02416-7